Five Accepted MICCAI and ECCV Papers

Congratulations to Peirong Liu, Lin Tian, Zhengyang Shen, and Sahin Olut, who got their MICCAI/ECCV papers accepted. These papers explore the following topics:

  • Statistical analysis of local brain differences [gm02] .
  • Data augmentation for image segmentation [sxo02] [osx02] .
  • Estimation of perfusion parameters in the brain [lya02] .
  • Registration of computed tomography images with limited angle stationary digital chest tomosynthesis images [tps02] .



PIANO: Perfusion Imaging via Advection-diffusion

Perfusion imaging (PI) is clinically used to assess strokes and brain tumors. Commonly used PI approaches based on magnetic resonance imaging (MRI) or computed tomography (CT) image the effect of a contrast agent moving through blood vessels and into tissue. Contrast-agent free approaches, for example, based on intravoxel incoherent motion, also exist, but are so far not routinely used clinically. MR or CT perfusion imaging based on contrast agents relies on the estimation of the arterial input function (AIF) to approximately model tissue perfusion, neglecting spatial dependencies. Reliably estimating the AIF is also non-trivial, leading to difficulties with standardizing perfusion measures. In this work we therefore propose a data-assimilation approach (PIANO) which estimates the velocity and diffusion fields of an advection-diffusion model best explaining the contrast dynamics. PIANO accounts for spatial dependencies and neither requires estimating the AIF nor relies on a particular contrast agent bolus shape. Specifically, we propose a convenient parameterization of the estimation problem, a numerical estimation approach, and extensively evaluate PIANO. We demonstrate that PIANO can successfully resolve velocity and diffusion field ambiguities and results in sensitive measures for the assessment of stroke, comparing favorably to conventional measures of perfusion.


Fluid registration between lung CT and stationary chest tomosynthesis images

Registration is widely used in image-guided therapy and image-guided surgery to estimate spatial correspondences between organs of interest between planning and treatment images. However, while high-quality computed tomography (CT) images are often available at planning time, limited angle acquisitions are frequently used during treatment because of radiation concerns or imaging time constraints. This requires algorithms to register CT images based on limited angle acquisitions. We, therefore, formulate a 3D/2D registration approach which infers a 3D deformation based on measured projections and digitally reconstructed radiographs of the CT. Most 3D/2D registration approaches use simple transformation models or require complex mathematical derivations to formulate the underlying optimization problem. Instead, our approach entirely relies on differentiable operations which can be combined with modern computational toolboxes supporting automatic differentiation. This then allows for rapid prototyping, integration with deep neural networks, and to support a variety of transformation models including fluid flow models. We demonstrate our approach for the registration between CT and stationary chest tomosynthesis (sDCT) images and show how it naturally leads to an iterative image reconstruction approach.




Adversarial Data Augmentation via Deformation Statistics

Deep learning models have been successful in computer vision and medical image analysis. However, training these models frequently requires large labeled image sets whose creation is often very time and labor intensive, for example, in the context of 3D segmentations. Approaches capable of training deep segmentation networks with a limited number of labeled samples are therefore highly desirable. Data augmentation or semi-supervised approaches are commonly used to cope with limited labeled training data. However, the augmentation strategies for many existing approaches are either hand-engineered or require computationally demanding searches. To that end, we explore an augmentation strategy which builds statistical deformation models from unlabeled data via principal component analysis and uses the resulting statistical deformation space to augment the labeled training samples. Specifically, we obtain transformations via deep registration models. This allows for an intuitive control over plausible deformation magnitudes via the statistical model and, if combined with an appropriate deformation model, yields spatially regular transformations. To optimally augment a dataset we use an adversarial strategy integrated into our statistical deformation model. We demonstrate the effectiveness of our approach for the segmentation of knee cartilage from 3D magnetic resonance images. We show favorable performance to state-of-the-art augmentation approaches.

UNC Biomedical Image Analysis Group (UNC-biag)

UNC Biomedical Image Analysis Group (unc-biag)