brain

Perfusion Imaging: A Data Assimilation Approach

Perfusion imaging (PI) is clinically used to assess strokes and brain tumors. Commonly used PI approaches based on magnetic resonance imaging (MRI) or computed tomography (CT) measure the effect of a contrast agent moving through blood vessels and …

Anatomical Data Augmentation via Fluid-based Image Registration

We introduce a fluid-based image augmentation method for medical image analysis. In contrast to existing methods, our framework generates anatomically meaningful images via interpolation from the geodesic subspace underlying given samples. Our …

Spatial Component Analysis to Mitigate Multiple Testing in Voxel-Based Analysis

Voxel-based analysis provides a simple, easy to interpret approach to discover regions correlated with a variable of interest such as for example a pathology indicator. Voxel-based analysis methods perform a statistical test at each voxel and are …

Votenet+: An Improved Deep Learning Label Fusion Method for Multi-Atlas Segmentation

In this work, we improve the performance of multi-atlas segmentation (MAS) by integrating the recently proposed VoteNet model with the joint label fusion (JLF) approach. Specifically, we first illustrate that using a deep convolutional neural network …

DeepAtlas: Joint Semi-supervised Learning of Image Registration and Segmentation

Deep convolutional neural networks (CNNs) are state-of-theart for semantic image segmentation, but typically require many labeled training samples. Obtaining 3D segmentations of medical images for supervised training is difficult and labor intensive. …

Fast predictive simple geodesic regression

Deformable image registration and regression are important tasks in medical image analysis. However, they are computationally expensive, especially when analyzing large-scale datasets that contain thousands of images. Hence, cluster computing is …

Metric Learning for Image Registration

Image registration is a key technique in medical image analysis to estimate deformations between image pairs. A good deformation model is important for high-quality estimates. However, most existing approaches use ad-hoc deformation models chosen for …

VoteNet: A Deep Learning Label Fusion Method for Multi-atlas Segmentation

Deep learning (DL) approaches are state-of-the-art for many medical image segmentation tasks. They offer a number of advantages: they can be trained for specific tasks, computations are fast at test time, and segmentation quality is typically high. …

Exploratory Population Analysis with Unbalanced Optimal Transport

The plethora of data from neuroimaging studies provide a rich opportunity to discover effects and generate hypotheses through exploratory data analysis. Brain pathologies often manifest in changes in shape along with deterioration and alteration of …

Patient-Specific Registration of Pre-operative and Post-recurrence Brain Tumor MRI Scans

Registering brain magnetic resonance imaging (MRI) scans containing pathologies is challenging primarily due to large deformations caused by the pathologies, leading to missing correspondences between scans. However, the registration task is …