The power of correlative microscopy: multi-modal, multi-scale, multi-dimensional

Abstract

Correlative microscopy is a sophisticated approach that combines the capabilities of typically separate, but powerful microscopy platforms: often including, but not limited, to conventional light, confocal and super-resolution microscopy, atomic force microscopy, transmission and scanning electron microscopy, magnetic resonance imaging and micro/nano CT (computed tomography). When targeting rare or specific events within large populations or tissues, correlative microscopy is increasingly being recognized as the method of choice. Furthermore, this multi-modal assimilation of technologies provides complementary and often unique information, such as internal and external spatial, structural, biochemical and biophysical details from the same targeted sample. The development of a continuous stream of cutting-edge applications, probes, preparation methodologies, hardware and software developments will enable realization of the full potential of correlative microscopy.

Publication
Current Opinion in Structural Biology
Marc Niethammer
Marc Niethammer
Professor of Computer Science

My research interests include image registration, image segmentation, shape analysis, machine learning, and biomedical applications.

Related