Semi-coupled dictionary learning for deformation prediction

Abstract

We propose a coupled dictionary learning method to predict deformation fields based on image appearance. Rather than estimating deformations by standard image registration methods, we investigate how to obtain a basis of the space of deformations. In particular, we explore how image appearance differences with respect to a common atlas image can be used to predict deformations represented by such a basis. We use a coupled dictionary learning method to jointly learn a basis for image appearance differences and their related deformations. Our proposed method is based on local image patches. We evaluate our method on synthetically generated datasets as well as on a structural magnetic resonance brain imaging (MRI) dataset. Our method results in an improved prediction accuracy while reducing the search space compared to nearest neighbor search and demonstrates that learning a deformation basis is feasible.

Publication
12th IEEE International Symposium on Biomedical Imaging, ISBI 2015, Brooklyn, NY, USA, April 16-19, 2015
Tian Cao
Tian Cao
Ph.D. in Computer Science
Nikhil Singh
Nikhil Singh
Postdoc
Marc Niethammer
Marc Niethammer
Professor of Computer Science

My research interests include image registration, image segmentation, shape analysis, machine learning, and biomedical applications.

Related