Differential Role for hippocampal subfields in Alzheimer’s disease progression revealed with deep learning

Abstract

Mild cognitive impairment (MCI) is often considered the precursor of Alzheimer’s disease. However, MCI is associated with substantially variable progression rates, which are not well understood. Attempts to identify the mechanisms that underlie MCI progression have often focused on the hippocampus but have mostly overlooked its intricate structure and subdivisions. Here, we utilized deep learning to delineate the contribution of hippocampal subfields to MCI progression. We propose a dense convolutional neural network architecture that differentiates stable and progressive MCI based on hippocampal morphometry with an accuracy of 75.85%. A novel implementation of occlusion analysis revealed marked differences in the contribution of hippocampal subfields to the performance of the model, with presubiculum, CA1, subiculum, and molecular layer showing the most central role. Moreover, the analysis reveals that 10.5% of the volume of the hippocampus was redundant in the differentiation between stable and progressive MCI.

Publication
Cerebral Cortex
Marc Niethammer
Marc Niethammer
Professor of Computer Science

My research interests include image registration, image segmentation, shape analysis, machine learning, and biomedical applications.

Related